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Abstract. We contribute a method for approximating users’ interruptibility 
costs to use for experience sampling and validate the method in an application 
that learns when to automatically turn off and on the phone volume to avoid 
embarrassing phone interruptions. We demonstrate that users have varying 
costs associated with interruptions which indicates the need for personalized 
cost approximations. We compare different experience sampling techniques to 
learn users’ volume preferences and show those that ask when our cost 
approximation is low reduce the number of embarrassing interruptions and 
result in more accurate volume classifiers when deployed for long-term use.  
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1 Introduction 

As mobile devices become increasingly ubiquitous in our environments, they 
increasingly ring or beep at inappropriate times or in inappropriate contexts such as in 
meetings or in movies. While we receive reminders to turn off our phones or put them 
in silent mode in these contexts, we often forget to do so which can result in 
embarrassing situations. Even when we do remember, we then forget to turn the 
ringer on afterwards resulting in missed calls [21] or missed notifications about SMS 
messages and calendar events. In this work, we are interested in learning users’ 
preferences for receiving audible notification preferences in order to enable an 
application we built to automatically change the volume of users’ phones. 

Because users often forget to change their phone volumes themselves, we cannot 
automatically train a machine learning classifier using their volume settings as they 
are not an accurate indication of their actual volume preferences. Because we expect 
these preference rules to be complex, it is not feasible for users to define volume rules 
before using our application. Instead, our application elicits volume preferences from 
the user through experience sampling while they are using the phone [14, 24, 27]. 
However, the experience sampling itself may interrupt and embarrass the user in the 
same situations as the original notifications. In order to reduce these interruption costs 
associated with asking, Kapoor and Horvitz have proposed and demonstrated the 
success of a decision-theoretic experience sampling technique that builds accurate 
classifiers by asking for preferences only when the potential cost of misclassifying 



that preference outweighs the interruption cost of asking now [13]. Our work builds 
upon this previous work to model user-specific costs (rather than an average cost for 
all users) while maintaining a high level of accuracy for all users.  

In particular, while the previous work assigns constant costs for asking at an 
inappropriate time and for misclassifying preferences for all users and all situations, 
we show that different users have different costs and these costs vary for each user in 
different situations. One user may not want to be interrupted during work, another 
may not want to be interrupted during meetings at work but would answer if 
necessary, and another may have no problem being interrupted at work. A constant 
model cannot capture this complexity and the wrong model could severely impact the 
usability of the model for users who have high costs for interruption. We aim to 
address these potential usability problems by creating personalized cost models for 
each user. Although users may not be able to predefine their interruption costs for all 
situations (just as they cannot predefine preferences for a classifier), we assume they 
can approximate this cost for a broad set of situations that we survey them about. We 
propose that these approximations can be used to determine times to ask for 
notification preferences that reduce the interruption cost from asking while 
maintaining the high accuracy that Kapoor has shown previously.   

We recruited participants to test the usability of our experience sampling technique 
against other commonly used techniques and to test the accuracy of the resulting 
classifiers’ volume prediction. Prior to testing the on-phone application, participants 
filled out surveys about their predicted phone volume preferences in a variety of 
situations. Additionally, we asked for participants’ predicted costs of being asked 
questions and the potential costs of an application misclassifying their preferences in 
each situation. Then, for two weeks, the application learned the users’ preferences 
through one of three experience sampling techniques (random sampling, uncertainty 
sampling, and our augmented decision-theoretic sampling). For participants in our 
experience sampling condition, we used the survey costs to approximate, and to 
determine when to ask for, their preferences. Then, users tested the accuracy of their 
classifiers for an additional two weeks.  

In this work, we make the following contributions. First, we contribute a method 
for approximating interruptibility costs and show that it improves the timeliness of 
questions asked during experience sampling. Second, we find that 7 out of 10 
participants in the decision-theoretic condition reported very high accuracy (near 
100%) with few or no errors while testing their classifier for two weeks. Third, we 
find that the user-specific cost models, while effective at improving usability for all 
users, reduced accuracy for the remaining 3 decision-theoretic participants as it asked 
too few questions and thus we caution using this technique for users with high asking 
costs. Finally, for these high cost users, we show that their initial preferences from the 
surveys can be used to create more accurate classifiers without sampling.   

2 Related Work 

As mobile phones are so ubiquitous and we increasingly have them available with 
us, it is becoming more important to understand when it is appropriate for them to 



interrupt us through rings and beeps. While users can characterize their own 
interruptibility preferences by changing phone modes (e.g., ring, vibrate, silent) to 
avoid unwanted phone calls [27], they often forget to set and reset their phone modes, 
resulting in unwanted interruptions or potentially missing important calls, or SMS or 
calendar notifications due to silent notifications [21]. With a model of interruptibility, 
a phone could automatically set its volume to avoid inappropriate interruptions and 
important missed calls.  

Phones today offer a variety of sensors such as accelerometers, microphones, and 
GPS that can be leveraged to classify a user’s context and interruptibility preferences. 
Studies have shown that human interruption in offices can be captured accurately by 
simple sensors such as these [6, 9], and other studies have found that users decide 
whether to answer their phones based on their activity, location, and who is calling – 
all of which are becoming more observable using current phone sensors [7, 15, 16]. 
With new applications to classify interruption preferences and react based on these 
predictions, it is not clear what accuracy level is acceptable for users. Kern and 
Schiele found that interruption classifiers generated by users predefining rules 
resulted in 80-85% accuracy (the highest of all classifiers they tested) [14]. In a 
simulated phone experiment, Khalil and Connelly found that users rated their 
simulated volume changer highly even though it incorrectly changed phone volume 
9% of the time, but that different users had very different satisfaction levels with the 
classifier accuracy [15]. It is important to test machine learning classifiers to 
understand whether users find their accuracy tolerable for real world use.  

While it is possible for machine learning researchers to collect data and build 
classifiers that apply to all users in some applications, it is infeasible for creating 
personalized preference models such as those for interruption because different 
people have different preferences. Additionally, because users often forget to change 
their phone volumes, their current volume settings are not an accurate indication of 
their actual volume preferences and the labels cannot be captured automatically as in 
[5] to learn email classifiers. However, Kern and Schiele argue that if the mobile 
device could use experience sampling [2, 23] to elicit preferences while the user is 
using the device, the resulting classifiers would be more accurate [14].  

Many different experience sampling techniques have been proposed to accurately 
elicit data labels from users in order to build classifiers including diary studies [3], 
device-initiated questions at different intervals of time [10, 20], and based on context-
awareness [11] and previous labels [26]. The active learning literature have also 
proposed a variety of ways to choose which data should be labeled [1, 12, 17, 18]. 
However, it has been shown that the frequency and repetition of questions can affect 
the accuracy and compliance with experience sampling [22]. Horvitz has argued [8] 
and attempts have been made in both the machine learning and experience sampling 
communities [4, 12, 13, 14] to take into account users’ interruption costs to determine 
when to ask. Kapoor and Horvitz propose a decision-theoretic sampling approach that 
trades off an interruption cost of asking and a future cost of misclassification to limit 
the number of questions but these costs are not personalized for each user [13]. For 
example, one user may be more willing to answer even when they are busy in favor of 
producing a higher accuracy classifier while another wants to receive as few questions 
as possible. Additionally, Kapoor and Horvitz’s resulting preference classifiers were 
not deployed to users so it is unclear whether their 70% accuracy obtained during the 



experience sampling is tolerable for users. For clarity in our paper, we differentiate 
interruptibility preferences that are learned by the classifier from interruption costs of 
asking used to determine when to ask for preferences. 

In this work, we aim to approximate users’ individual interruption costs to improve 
the usability of an experience sampler by limiting the questions that are asked when 
each particular user is busy. In particular, we build upon Kapoor’s decision-theoretic 
experience sampling technique to include our personalized cost of asking models that 
we approximate with users’ survey responses. We use the interruptibility preference 
data collected via experience sampling to build a classifier to determine when users 
want their phone to ring (i.e., when they are interruptible). We compare decision-
theoretic sampling using our personalized cost models to more traditional experience 
sampling approaches and show that our personalized cost models lead to more timely 
questions for users and often led to nearly 100% accurate interruptibility preference 
classifiers. Additionally, we test our classifiers over two weeks to understand not only 
the costs of collecting personalized data but also the required accuracy of classifiers 
deployed to users in the real world.  

3 Domain: Mobile Phone Interruptibility Preferences  

We designed an Android application that learned users’ volume preferences for phone 
calls, SMS messages, and calendar alarms. The application ran as a background 
process on the phone and listened for notifications (phone calls, incoming SMS 
messages, and calendar alarms). When a new notification arrived (e.g., when the 
phone is about to ring), the application collected a variety of sensor and user-
generated features and ran a classifier on those features to determine if the phone 
volume should be loud or silent. We did not turn on or off the vibration for this study.  

Phone Interruption Features 
We collected a variety of features based on sensor and other data that we can actively 
collect and have been shown to be effective at determining mobile interruptibility 
(e.g., [7, 25, 27]) (Table 1). Examples of these features include GPS longitude, 
latitude, the time of day, and whether the user is talking on the phone. Additionally, 
the Android API provides information about the notification itself, which we will call 
the reason for the notification (in bold in Table 1). For phone calls and SMS 
messages, this includes information about the type of person who was contacting the 
user (e.g., if they were in the user’s favorites list, contact list, or neither) and the 
frequency of contact by this contactor. Calendar notification reasons included 
information about whether the calendar event was repeating versus a one-time event. 

Due to the high battery cost of collecting this information on the phone, we only 
collected it when a new notification arrived with the exception of GPS coordinates. 
GPS coordinates were collected once per minute when the accelerometer values were 
above a certain threshold. Otherwise, it was assumed that the user was not moving 
and the GPS was turned off. As a result, the application had to quickly analyze the 
features and run the classifier to change the volume before the first ring or beep 
occurs, in case it was necessary to suppress it – in approximately ½ second. 



Interruptibility Classification Model 
In this work, we use logistic regression (LR) classifiers because of the computational 
speed and efficiency on small platforms such as phones. The LR model distinguishes 
between two “classes” of interruption preferences – those in which the phone should 
audibly ring (LOUD = 1) and those in which it should not (SILENT = 0) – using the 
features F defined in Table 1. In particular, for a new situation with features F, LR 
calculates the probability of those features being labeled as LOUD as: 

 
If P(LOUD|F) is greater than 0.5, then the prediction is LOUD. Otherwise, the 
prediction is SILENT. The classifier defines the weights wi by minimizing differences 
(errors) between the labels yj that the user provides through experience sampling 
(training data) and the classifier’s predicted label Yj for each training example j: 

      
We use experience sampling techniques to generate the training preference data 

that is used to learn to a classifier that distinguishes users’ interruption preferences –
when they want audible notifications. Each time a user responds to the experience 
sampler’s question, the features of the current notification and the user’s response are 
given to the LR classifier as training data to update the weights. Additionally, two of 
the experience sampling techniques - uncertainty and decision-theoretic sampling - 
use the classifier to determine whether to sample for preferences on new notifications.  

Study Overview 
Our study contains 3 parts. First, we surveyed users of mobile phones to understand 
their interruption preferences and interruption cost to learn those preferences in a 
variety of situations: at work, in the movies, at home. We will show that they not only 
had different preferences (as found in previous work) but also that they have different 
costs of asking. We then recruited participants to train a preference classifier for two 
weeks to understand the usability and accuracy of different sampling techniques. 
Finally, we tested the model of their personalized classifiers for an additional two 
weeks to understand whether the final accuracy is tolerable for the participants. 

GPS: Longitude, Latitude, 
Speed 

Accelerometer X, Y, Z 
axes 

Time until Next Meeting 

User in Meeting Noise (in dB) Hour of Day 

Day of Week User on Phone Count of Times On-Phone 
Caller has Contacted User 

User on Phone with 
Someone in Contact List 

User on Phone with 
Someone in Favorite List 

Next Meeting is a Repeated 
Meeting 

Contactor is in Contact 
List 

Contactor is in Favorites 
List 

Count of Times Contactor 
Has Contacted User 

Table 1. Features used in our personalized cost models - bold indicate the 
notification context, while the rest describe the participants’ situations. 



4 Experience Sampling to Acquire Training Data 

Experience sampling was originally introduced to intentionally interrupt study 
participants in order to have them make notes about their current situations [2]. These 
interruptions could happen at regular or random intervals with the expectation that 
participants would be more accurate in describing their current situations in the 
moment rather than later during interviews. Rather than depend on users to define 
their preferences before our study or recall them each evening, we use this approach 
to collect user preferences for training our classifiers.  

We want to use experience sampling to build and train personalized preference 
classifiers for mobile phone users without affecting the usability of our application. 
Unlike traditional experience sampling techniques in which the participant should be 
interrupted, we are interested in minimizing this interruption so that users are more 
likely to answer the questions over time [22]. Several techniques have been proposed 
for when to collect accurate data from users. However while some focused on 
minimizing the questions, they do not guarantee that questions minimize interruption.  

Random Sampling 
In random sampling, the decision to elicit the user’s preferences is made irrespective 
of the classifier that is being built with the user’s responses. It is likely that a 
preference may be asked for the same or very similar situations multiple times, 
making some of the elicitations extraneous. However, this sampler ensures that the 
there is a broad set of data to train a classifier with. In our work, we assume that a 
user’s phone rings on average 3 times per day (participants were screened for this) 
and we want the phone to ask at least once per day so our random sampler elicits 
preferences approximately 1/3 of the time when the phone rings. To decide when to 
ask, the sampler generates a random number p between 0 and 1 and asks if p < 0.3. 

Uncertainty-Based Sampling 
Unlike random sampling, uncertainty sampling builds the preference classifier using 
the data collected so far and then decides whether to ask for a new preference based 
on the classifier prediction [1, 17]. The goal of uncertainty-based sampling is to 
reduce the number of labeled preferences by only asking in situations that have not 
previously been encountered. If a new situation is encountered, it may benefit the 
classifier to get the user’s preferences in order to classify it correctly in the future. 
However, if a similar situation was already encountered, the user should not have to 
provide their preferences again.  

Specifically, classifiers such as LR, output a real value p between 0 and 1 rather 
than the binary 0/1 classification with the rule that if p < threshold of 0.5, then predict 
0, otherwise predict 1. We use P(LOUD|F), defined above, as our uncertainty measure 
p, where LOUD is defined as 1. The closer to 0.5, the less certain the classifier is of 
the user’s actual preference and the less likely it is that there is a previously labeled 
situation that is similar to the current one. Uncertainty sampling asks for the user’s 
preference for the notification if the current classifier outputs a p between 0.3 and 0.7. 



Decision-Theoretic Sampling 
Recently, Kapoor and Horvitz introduced decision-theoretic sampling to limit the 
number of labels the sampler requests about the user’s interruptibility by taking into 
account the p value from uncertainty sampling and other interruption cost information 
about the user [13]. When the uncertainty is high, this technique trades off a 
predefined cost of asking A (a user’s cost of interruption for a question) with the cost 
of misclassification M (user’s preference for accuracy) with the aim of collecting 
equal amounts of data when the user was busy and when the user was available. If the 
cost of asking is higher than the cost of misclassification, the assumption is that the 
user is busy. If the cost of misclassification is higher, the assumption is that he is 
more willing to answer. The decision-theoretic sampler asks for a user’s volume 
preference if M > A, where M is defined in terms of the change in the prediction 
uncertainty (Δp) if the new data is added (details in [12]). 

In Kapoor’s work, the costs of asking and misclassification were kept constant 
across all users and equal – 1 each. However, some recent work has indicated that 
different users may deal with misclassifications differently [15]. Some users may 
have very high cost of misclassification and therefore may be much more willing to 
answer questions to train an accurate classifier or vice versa. By more accurately 
estimating these costs for each user, we argue that it is possible to create a more 
personalized asking mechanism that is more usable for each user. Like phone 
notifications themselves, it is difficult for users to predefine the situations in which 
they are willing to be asked questions. In order to approximate the cost of interruption 
to determine when to ask, we propose to survey users’ interruption preferences with a 
set of concrete situations and use linear regression to interpolate to other situations 
that the user encounters during normal daily phone use. We will compare the usability 
and accuracy of our augmented decision-theoretic experience sampling approach 
against the other experience sampling techniques.  

5 Approximating Cost Models with Surveys 

In order to understand phone users’ predicted volume preferences and interruption 
and misclassification costs across a variety of situations, we surveyed users of smart 
phones who receive several phone calls, SMS messages, and calendar alarms daily. 
Participants were asked to rate their preferences for receiving audible notifications in 
a variety of hypothetical, but real world, situations and their expected costs to train 
the classifier. We analyzed the differences in preferences and cost ratings between 
participants in the same situation as well as differences that a single participant 
provided across multiple situations to determine if a single approximation (as found in 
[15]) is sufficient or if personalized approximations are also needed.  

Method 
Before the survey began, participants were first asked a series of questions about their 
work schedule and common modes of transportation, which might affect their survey 
responses about situations in which they want audible notifications. Participants were 
then given 20 hypothetical situations when their phone might display a notification 



for each notification type. These situations were drawn from the sensor features in 
Table 1 and described participants’ environments (e.g., work or movie theater) or 
activities at the time of the interruption (e.g., driving a car or relaxing at home).  

Participants were given a short description of each of the situations and notification 
reason for the interruption, and were asked 1) if they would want audible notifications 
in that situation (interruption preference). Then they were asked to rate 2) their 
expected annoyance if the phone has the wrong volume setting (cost of 
misclassification) and 3) their expected annoyance if the phone asked which volume it 
should use (cost of asking). The questions were as follows: 
1) In this situation, would you want your phone to ring out loud? Answer: Yes/No  
2) How upset would you be if the phone did the opposite (rang when it should have been 

silent or vice-versa)? Answer: Likert scale 1 (no problem) to 7 (I would be very upset).  
3) In this situation, how upset would you be if your phone asked what it should do if it didn’t 

know? Answer: Likert scale 1 (no problem) to 7 (I would be very upset). 
An example of the questions for a situation where a user is in a meeting at work is 
found in Table 2, Additionally, participants were able to list exceptions to their 
interruption preferences for each situation.  

Notification 
Type  Notification Context Question 

Phone 
Favorite List,  
Contact List, 

Frequently Calls 

If you were at work in a meeting and someone in 
your favorites list called, would you want your 

phone to ring aloud? 

Phone 
Not in Favorite, 

Contact List, 
Occasionally Calls 

If you were at work in a meeting and someone in 
your contact list called, would you want your 

phone to ring aloud? 

Phone 
Not in Favorite,  

Not in Contact List,  
Few (if any) Calls 

If you were at work in a meeting and someone 
not in your contact list called, would you want 

your phone to ring aloud? 

SMS 
Favorite List,  
Contact List, 

Frequently Texts 

If you were at work in a meeting and someone in 
your favorites list texted you, would you want 

your phone to beep aloud? 

SMS 
Not in Favorite, 

Contact List, 
Occasionally Texts 

If you were at work in a meeting and someone in 
your contact list texted, would you want your 

phone to beep aloud? 

SMS 
Not in Favorite,  

Not in Contact List, 
Few (if any) Texts 

If you were at work in a meeting and someone 
not in your contact list texted, would you want 

your phone to beep aloud? 

Calendar Repeating Meeting 
If you were at work in a meeting and a repeating 
meeting was about to start, would you want your 

phone to beep aloud to remind you? 

Calendar Non-repeating 
Meeting 

If you were at work in a meeting and a non-
repeating meeting was about to start, would you 

want your phone to beep aloud to remind you? 

Table 2. Eight questions were asked about whether the user’s phone should 
ring in a meeting at work. Prior to taking the survey, participants were given 

definitions of the notification contexts to help them answer the questions. 



All combinations of situations, notification reasons and notification types (phone 
call, SMS message, or calendar alarm) were presented to participants. Because of the 
number of situations that would be necessary to train a classifier, we split the survey 
into twelve parts. Each participant was given the option of answering all questions 
through all 12 surveys, but was not required to complete them all. Before each survey, 
participants confirmed that they did receive each notification type the survey focused 
on (e.g., only those who received calendar alarms filled out the calendar surveys).  

Participants 
Participants were recruited through a Carnegie Mellon participant recruiting website 
to complete the online surveys. We are interested in both within-subject differences 
across notification types, as well as between-subject differences for each situation. In 
total 44 participants took all 12 surveys and 50 more participants took subsets of the 
surveys for an average of 69.25 participants per survey. Sixty-five out of 94 
participants reported that they were students. The rest reported jobs such as cashier, 
machine shop manager, photographer, and administrative assistant. The average age 
of the participants was 25.27 with standard deviation 6.3. 

Approximating Participants’ Costs 
We received a total of 9219 responses to our surveyed situations questions and 

analyzed the proportion of participants who wanted audible notifications for each 
notification type (calls, SMS messages, or calendar alarms), situation, and notification 
reason to understand interruption preferences. We found that participants had very 
different interruption preferences for each type of notification, which is contrary to 
current phone settings that only allow a single phone volume for all notification types. 
For example, at work, 45% of participants wanted calendar notifications during 
meetings compared to 7% on average who wanted phone calls or text messages in the 
same situation (Figure 1). Only 35% of participants wanted to receive phone calls at 
work, but more wanted text messages, especially from those on their favorites list.  

Participants noted that, currently, they often kept their phone on vibrate rather than 
silent or loud volume because of these situational and notification type differences. 
One participant said that they prefer to err on the side of caution when it comes to 
phone volume and “I can find the time to check the onscreen message if I'm not too 
busy” rather than listening for an audible notification. When they had to decide on a 
loud or silent volume setting, participants often responded that they would not want 
their phone to ring “unless it was a family emergency” or “unless I’m getting a ride 
from that person.” These exceptions are hard to enumerate and predefine and indicate 
a need to use experience sampling to capture preferences in situ. 

In order to be able to collect these in situ responses, we use their surveyed costs of 
misclassification and asking. Participants reported varying costs of misclassification 
responses on the Likert scale from 1-7 (mean 4.3, s.d. 2.1). Participants responded 
nearly half of the time (4436/9219 responses) that they would have “No Problem” if 
their phone asked them for their preference (mean 2.6, s.d. 1.95). There was no 
particular situation where a majority of participants indicated that they would not be 
willing to answer. In fact, some participants indicated that they would always be 
willing to answer questions while others indicated there were situations when they 



never wanted to answer questions. These results show that a single cost model for all 
situations and/or all participants (from [13]) would likely interrupt many participants 
who indicated they did not want questions. 

In order to approximate the costs for all situations in our phone app, we created 
artificial but plausible sensor values for each of the features in our application. Then, 
we used those sensor values to train a linear regression (easily computable on a 
phone) with the surveyed Likert ratings. For example, in order to model situations in 
the car, we averaged sampled accelerometer, microphone, and GPS values collected 
while driving with phones and labeled it with the corresponding Likert rating. For any 
new sensor data, the linear regression model will predict the cost of asking and 
misclassifying. Our linear regression models varied in their ability to capture each 
participant’s predicted asking costs, as measured by the R2 test, but overall was 
successful for such a simplistic model. Because we used only the features in Table 1 
and did not use complex features, our cost approximations are easy to calculate on 
phones but may not always be predictive. Some of our linear regressions had R2 
values near 1; others were only about 0.3 (mean 0.65, s.d. 0.15).  

Based on these findings and analysis, our phone volume application will need to 
learn a separate preference classifier (and use a personalized cost model) for each 
notification type and each participant.  

6 Learning Interruption Preferences using Experience Sampling 

In order to understand the impact of personalized cost models on the usability of 
experience sampling and the accuracy of the resulting preference models, we 

 
Figure 1. Participants varied greatly in their preferences for audible 

notifications at work when they were not in meetings, but mostly agreed that 
they should not receive calls or text messages during meetings.  
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designed a four-week experiment. Participants in the study were given our phone 
application, which learned their volume preferences and actually changed the volume 
of the phone based on learned classifiers. The application used one of three 
experience sampling algorithms - random, uncertainty, or decision-theoretic sampling 
– which asked them about their interruptibility preferences for each of the notification 
types, and used those preferences to build the volume classifiers.  

Study Design and Procedure 
Twenty of the survey participants who filled out all 12 surveys and had Android 
version 2.0 or higher phones were recruited to participate in our study to learn their 
phone volume preferences. Participants were asked to train their application, 
providing their volume preferences when asked, for two weeks and then test the 
resulting models for another two weeks, each night filling out surveys about the 
accuracy of the application and their current annoyance with either the questions or 
the volume changer itself. Participants were randomly but evenly assigned to one of 
four conditions – including two for decision-theoretic sampling – which determined 
when to ask for their preferences for phone volume when new notifications arrived: 

• Random Sampling 
• Uncertainty Sampling 
• Decision-Theoretic Sampling 
• Decision-Theoretic Sampling with Notification Reason 

Because user preferences varied so greatly across participants, we did not test 
Decision-Theoretic (DT) sampling with a single cost model. Additionally, we do not 
test Kapoor’s DT-dynamic condition (shown to be most accurate in highly changing 
domains) because we assume that users’ preferences remain constant over the four 
weeks of the study. However, we did find in our surveys that the reason for the 
notification (e.g., who is calling or whether the meeting is regularly scheduled) is a 
feature that users often use to determine whether they want an audible notification. 
We test the accuracy of preference classifiers that use this additional feature versus 
ones that do not, but do not test its use in experience sampling because the identity of 
the caller should not affect the cost of answering a question. The two DT techniques 
asked using the same algorithm.  

Our volume changing application was loaded on each participant’s phone, with a 
parameter file indicating which experience sampling technique to use and the linear 
regression cost models that were calculated from the participant surveys. Participants 
were told about the features that the application monitored and that it logged the 
features of each incoming notification, the classifier’s prediction, and labels into a 
text file that we would collect once the study was complete. In addition to answering 
the application’s questions, they were asked to fill out nightly online surveys on their 
phone about the accuracy of the model each day as well as the application’s usability.  

Participants were asked to keep the application running at all times during the 4 
weeks of the study and were notified via email if the application quit at any time. 
After two weeks, the application automatically switched from training mode, which 
asked users for preferences but did not change the phone volume, to testing mode, 
which used the prediction to turn on or off the volume of the phone for each type of 
notification. One participant left the study after the training phase because of a family 



emergency that required her to hear her phone all the time. After four weeks, 
researchers paid the participants $80, removed the application and collected the logs 
that were written to the phone over the course of the study.  

Measures and Analysis 
We measure four dependent variables: the number of questions asked, the accuracy of 
the classifier (collected each night over the 4 weeks) and the annoyance of both the 
asking and misclassification. The classifier accuracy is measured by comparing the 
classifier’s predictions and the user’s actual preferences collected from nightly 
surveys. We compare the experience sampling techniques using a repeated measures 
ANOVA of the accuracy, number and timeliness of responses over time. We collected 
annoyance ratings in the nightly surveys, but because participants did not have any 
other condition to compare to, they all rated their application as usable. Instead, we 
asked participants during their final interviews to recall specific situations when their 
application interrupted them, when the volume was incorrect as well as any other 
general impressions that they had about the application. We used these findings to 
distinguish the different sampling techniques.  

Results 
Overall, we found our approximated cost models had a significant effect on the 
number of questions that participants were asked and the usability and accuracy of the 
application. Participants in both decision-theoretic conditions reported that they were 
overall very satisfied with the timeliness of their questions and the resulting models 
were more accurate for most of the participants compared to the participants in 
random and uncertainty sampling conditions. We find that decision-theoretic 
participants who predicted they would have high interruption costs had lower 
accuracy because they were asked fewer questions, but that we can use participants’ 
survey results to add more training examples and increase the accuracy. 

Number and Timeliness of Questions 
Participants received an average of 285 (min 32, max 717) phone calls, SMS 
notifications, and calendar alarms during the 14-day training period and received an 
average of 13 (s.d. 9.1), 41 (s.d. 59), and 3.2 (s.d. 5.8) questions respectively over the 
same period of time. Participants received far more SMS messages than phone calls 
and calendar alarms and the number of questions about them reflects this difference. 

We compared the number of questions that participants received in each condition 
of the study for each type of notification (phone call, SMS message, calendar alarm) 
using a repeated measures test to understand whether the number of questions 
decreased over time and differed between conditions. We found that, for phone calls, 
both day of training (F[13,195] = 4.67, p < 0.01)  and condition (F[3,15] = 4.95, p = 
0.01) played a role in the number of questions participants received, but there was no 
interaction effect (F[39,195] = 1.0, p > 0.05). For SMS messages, there was high 
variability in the number of questions by participant mainly because some participants 
received many more text messages than others so we found that there was only a 
significant effect of day of training on the number of questions (F[13,195] = 3.55, p < 
0.01). There were no significant effects on the calendar alarms as all participants 



received very few questions to learn an accurate classifier. Next, we analyzed the 
specific effects that the training day and experimental condition had on the number of 
questions. 

A Tukey HSD test on the day of training for each of the phone and SMS messages 
showed that participants received statistically significantly more questions on days 1 
and 2 (mean phone 2.33, SMS 6.96) compared to each of days 5-14 (all phone means 
less than 1.0 questions per day, SMS means less than 2.5). After day 2, the number of 
questions decreased for both phone and SMS notifications (Figure 2). The drop in 
notifications in the random condition is not significant. 

Interestingly, a Tukey HSD test on the experimental condition for phone calls 
showed that the Decision-Theoretic Sampling resulted in a statistically higher number 
of questions (mean 1.6 questions per day) compared to Uncertainty sampling (mean 
.47 questions) and Decision-Theoretic with Notification Reason (mean 0.65 
questions). There was no statistical difference between Random sampling (mean 0.96) 
and any other condition. Because we expected the two Decision-Theoretic sampling 
conditions to have similar results, we investigated this anomaly further. We found that 
4/5 participants in the Decision-Theoretic condition reported low estimated costs of 
asking - each had an average cost of less than 4 out of 7 – compared to only 2/5 with 
low costs of asking in the DT + reason condition. When we add an extra independent 
variable representing a binary high or low cost of asking in our analysis, we find (as 
expected) that participants in both Decision-Theoretic conditions who indicated they 
had a low cost of asking were asked statistically significantly more questions per day 
compared to those with a high cost - on average 1.45 compared to 0.52 (F[1,6] = 6.51, 
p < 0.05). This cost accounts for the differences in the Decision-Theoretic conditions.  

Despite the higher number of questions for 6 out of 10 of the decision-theoretic 
condition participants, all participants in both DT conditions reported that they were 
very satisfied with the timeliness of the experience sampling questions. Many 
participants in the random and uncertainty sampling conditions said they “eventually 

 
Figure 2. As the classifier uncertainty decreased through training, the 

number of questions decreased for Uncertainty and both Decision-Theoretic 
conditions. However, it did not decrease for Decision-Theoretic participants 
who said they were willing to answer more questions to increase accuracy.  
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got used to the questions” but were annoyed by them before that. This indicates that 
our personalized models had the effect we intended, in reducing the number of 
questions when users had high interruption costs and asking at more appropriate times 
for all participants including those who received questions everyday. 

Accuracy 
Thirteen out of nineteen participants reported at the end of the study that they were 
happy with the accuracy of their application. Three requested to see the application in 
the Android app store to download again. The accuracies of the conditions were 0.83 
(s.d. 0.1) for random sampling, 0.85 (s.d. 0.1) for uncertainty, 0.85 (s.d. 0.23) and 0.9 
(s.d. 0.21) for decision-theoretic without and with notification reason respectively. 
The difference in accuracy between conditions is not statistically significant. 
Although participants indicated that notification reasons were important in 
determining their volume preferences, classifiers trained with these extra features had 
the same accuracy as those trained without them.  

We combine the decision-theoretic conditions to show the differences in accuracy 
between the 6 participants with low costs of asking compared to the 4 with high costs 
(Figure 3). Three of the four high cost participants in the decision-theoretic conditions 
had accuracy lower than 0.8 for phone calls and text messages (mean 0.66, s.d. 0.16) 
compared to an average accuracy of 0.98 for participants with low cost of asking. Our 
decision theoretic samplers with approximated cost models are capable of very high 
accuracy when users are willing to answer questions. The experience samplers with 
high costs could not identify enough situations to ask but maintain usability, and the 
lack of labeled training data resulted in low accuracy for these classifiers.  

In an effort to create more accurate classifiers for these 3 participants with high 
costs of asking, we examined the participants’ survey responses to understand if their 
predictions were accurate. One participant’s schedule and corresponding volume 

 
Figure 3. Participants with low costs of asking in Decision-Theoretic 

conditions had the highest accuracy classifiers for each notification type 
(mean 0.99, 0.97, 1.00 respectively). Three participants in the two Decision-
Theoretic conditions had high costs of asking because they were not asked 

enough questions to create accurate classifiers. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phone SMS Calendar

Notification Type

A
cc

u
ra

cy
Random Uncertainty Decision Theoretic Low Cost Decision Theoretic High Cost



preferences changed after providing survey responses and the training period. 
Because the participant did not anticipate these changes, a classifier trained on these 
survey responses could not have been accurate. For the two other participants, 
however, the survey responses would have increased the classifier accuracy. For 
example, one participant’s classifier turned the volume off in the evenings when he 
was relaxing causing him to miss many phone calls and text messages. The decision-
theoretic experience sampler never asked for his preferences in this situation in order 
to preserve usability. If the classifier had used his single response to the survey – that 
he did want his phone to ring and beep - his accuracy would have increased from 75% 
to over 92%.  We conclude that we can use participants’ survey responses as 
additional training data for inaccurate classifiers. 

In summary, participants in both decision-theoretic conditions reported that they 
were very satisfied with the timeliness of the questions they were asked compared to 
the participants who received random and uncertainty sampling. The resulting models 
were more accurate for most of the participants in these conditions as well. However, 
some decision-theoretic condition participants received fewer questions than others 
due to their high cost models and this affected the accuracy of their classifiers. We 
find that in most cases we can use participants’ survey responses to increase the 
accuracy of the classifiers when they have high interruption costs. 

7 Discussion 

We have compared the accuracy and usability of three different experience sampling 
algorithms and found that our decision-theoretic sampling with personalized cost 
models was most accurate and asked questions at the most appropriate times. Next we 
address some of the participants’ difficulties and suggestions that they made after 
using our application for four weeks.  

Survey Responses as Approximate Interruption Models 
Our main assumption in using experience sampling was that participants have 
difficulty predicting their preferences in advance, but that we could use these 
predictions to approximate interruptibility. We found that overall, this approach was 
very successful in maintaining very high accuracy while limiting the interruptions at 
inappropriate times. Thirteen participants also preferred answering questions over 
time and thought their in situ responses were more accurate than their survey 
predictions, and three thought a combination of surveys and experience sampling 
would be most accurate. Participants who preferred the questions reported that they 
liked that “it prompted me because it made me think of what I'm doing now” and that 
is hard to do before using it. This finding mirrors other experience sampling findings 
that participants answer more accurately in the moment, but contradict other HCI 
arguments that users should not be interrupted to train classifiers [5]. 

Participants who received few questions resulting in poor accuracy said that they 
would have been willing to answer more questions if they were told that their costs 
affected the classifier accuracy. A visualization showing the costs of interruption and 
the average resulting accuracy could allow participants to see the results of their 



tradeoffs concretely before using the application. Future work is needed to evaluate 
whether such visualizations are understandable and affect users’ predicted 
interruption costs. 

Volume Preferences Change over Time  
We also found that participants’ volume preferences changed throughout the study. 
Participants started new routines in the middle of the study – either starting classes or 
their kids started new activities. Because they had already started or even completed 
the training of their classifier, they could not reverse or change the previous responses 
and their classification accuracy suffered. Participants reported at the end of the study 
that they wanted to change or start the training over because they had such different 
preferences. As a result, we argue that applications should be able to employ lifelong 
learning techniques such as forgetting [12] or at least allow users to change their 
preferences to maintain accuracy as they drift or schedules change over time. 

Some participants reported that there were sometimes unexpected circumstances 
that their classifiers could not handle. For example, some students were willing to 
receive audible text message notifications in class, but they did not want them on days 
when they had exams. Participants were not thinking about exams during their classes 
when they answered questions during training but had no way of changing the 
classifier’s prediction on that particular day. For circumstances like these, we suggest 
the use of an override button to force the phone volume to be at a set level for a set 
amount of time. This button could also give users a better sense of control about their 
phone notifications if they are uncertain about what their classifier will predict. 

Need for Intelligibility  
Intelligibility became a big issue for our participants as their phone applications 
transitioned to testing mode. Uncertain of what their classifiers had learned, many 
participants emailed the authors asking how to find out what they should do if their 
classifiers learned the wrong thing. We argue that offering a “what if” interface (in 
which participants could have set different features to see the resulting prediction 
[19]) could have reduced some of the uncertainty and lack of control that users felt 
during testing mode in our study. Users could check that their classifiers make 
accurate predictions and provide extra examples for those situations in which it does 
not.  

Participants also requested an interface in which they could see and change the 
rules that were generated for their classifier, especially if it was consistently wrong 
about a set of situations. We found that the classifiers were most overconfident in the 
uncertainty sampling condition and if users could adjust the classifiers during both 
training and testing phases, it could have reduced the potential errors and helped 
identify opportunities for the sampler to request more preference data. One student 
participant, for example, said that his classifier learned to turn his ringer off too early 
in the evening and this could have been easily resolved if he could have set the time 
feature. However, it is often difficult to show the rules of a classifier in a simplified 
way. More work is needed in order to understand what information users really want 
to know about their classifiers and what is too complicated or not important to show. 



8 Conclusion  

In this work, we have presented a phone volume application that classifies users’ 
interruptibility and adjusts the volume accordingly. Because users have difficulty 
predicting their interruption level when they are not actually in the asked-about 
situation, we introduce an experience sampling technique that asks users to predict 
their costs of interruption and uses these predictions to approximate a cost model and 
determine when to actually ask for preferences. We deployed our volume application 
to learn users’ preferences over 2 weeks and test the resulting classifier for 2 weeks, 
comparing the usability and accuracy of our experience sampling technique against 
other traditional techniques.  

We find that our method for approximating interruptibility improves the timeliness 
of questions asked during experience sampling. Additionally, we find that 7 out of 10 
participants in the decision-theoretic condition reported very high accuracy with few 
or no errors while testing their classifier for two weeks. However, we find that the 
cost models, while effective at improving usability for all users, actually harmed 
accuracy for the remaining three Decision-Theoretic participants by asking too few 
questions and thus we caution using this technique for users with high asking costs. 
Finally, for these high asking cost users, we show that their initial predictions from 
the surveys can be used to create more accurate classifiers than the experience 
sampling could. Future work is needed to increase the intelligibility of the classifiers 
and the cost models to give users more control over their phone. Additionally, more 
work is needed to understand how phone preferences change over time and how we 
can develop classifiers to maintain high accuracy during through lifelong learning.  
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