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ABSTRACT
Over the course of a day, people often attend many appointments,
like meetings or doctor’s appointments, with time and location
constraints, as well as perform other tasks like stopping by the
grocery store with only location constraints. Optimally scheduling
the day’s agenda typically requires a high cognitive load, where
people reason about all their constraints at once. An agent that aids
a person in scheduling the day’s agenda can potentially reduce the
stress associated with scheduling but must be able to 1) perform fast
updates and 2) produce new agendas that can be readily understood
by the people they are helping. In order to understand how people
reason about agenda changes, we first performed a study where
participants are asked to perform a series of scheduling tasks and
captured their update strategy both subjectively (self-reporting)
and objectively (by tracking their reasoning). Our results that show
that people use spatial cues and meeting time information to reduce
the rescheduling task to a more reasonable size. We then present a
novel heuristic for adding tasks to agendas that targets rescheduling
to clusters of appointments that are spatio-temporally near the new
task. We show that this heuristic approach always finds the optimal
solution, while greatly reducing rescheduling time, and performs
rescheduling in a way that is similar to our participants’ strategies.
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1 INTRODUCTION
In the real world, lots of activities are time- and location-constrained,
but many are not. Over the course of a day, we attend many ap-
pointments like meetings or doctor’s appointments with specific lo-
cations to navigate to and specific times to arrive and leave, and we
also have other tasks to complete that only have location constraints
like taking money of out the ATM or stopping by the grocery store
before dinner. Note that these tasks are not necessarily unforeseen
or dynamic; going to the grocery store could be a weekly activity
without an exact scheduled time. Creating a valid agenda of times
and locations to complete all of the activities requires searching
through the time gaps between set appointments to find those that
are long enough to navigate to, complete, and navigate away from
each task location without disrupting the remaining appointments.
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The cognitive overhead of performing such scheduling tasks is
very high for individuals [2, 18, 19]. People often create physical
artifacts, elaborate plans, and routines around scheduled activities
to avoid forgetting their agenda, but often still forget especially
when unexpected events (especially unscheduled tasks) come up
[1, 7]. Many tools have been created to help people with scheduling
(e.g., [3, 5, 21, 23]). One challenge to developing activity scheduling
support algorithms and extending them to schedule tasks is that
current optimal schedulers take exponential time in the number
of tasks to complete. In particular, they attempt to place new tasks
within an agenda in every possible time gap in order to minimize
the overall agenda length. These schedulers seek agenda length
optimality regardless of search time, which is NP-Hard [10]. While
scheduling agendas is hard for computers, we notice that humans
can perform the task relatively quickly while maintaining near-
optimality. The speed is especially important given that new tasks
that arise during the day tend to be unplanned and must be resolved
quickly in order to keep up the pace of execution [1]. In order for
us to build usable, deployable decision-support systems to reduce
people’s cognitive load on scheduling tasks, we must be able to add
new tasks to the agenda as quickly and effectively as humans. A
related goal is to be able to do so in a way that is explainable so
that people can understand and interpret them.

Towards this end, we conducted both human-subject and sim-
ulated experiments to understand both how people add tasks to
existing agendas, and how optimal planners can quickly perform
the same task. We conducted a human-subject experiment in which
we asked participants to add tasks to several daily agendas and col-
lected their strategies similar to [11] for meeting scheduling, [15]
for collaborative planning, and [4] for routing. We found that many
people solve the problem by trying to fit tasks into any available
time gap before the end of the last meeting. Importantly, a set of par-
ticipants also used a self-described “location-based” strategy that
focused on the few appointments during the day that were closest
in proximity to the new task; this strategy resulted in those par-
ticipants searching fewer time gaps between appointments while
maintaining accuracy at finding valid times for scheduling tasks.

Leveraging the successful location-based strategy of human par-
ticipants, we propose a heuristic for searching agendas that focuses
on the spatial proximity to existing appointments and tasks in ad-
dition to their time constraints. The approach identifies the portion
of the agenda that is spatially the most similar to the new task, and
then performs rescheduling with that smaller group of activities
and the new task. Intuitively, this heuristic targets activities on
the agenda that are likely to support the new task because spatial-
closeness implies that navigation time between the activities is
shorter so the time gaps can be smaller yet still fit the new task.

Through extensive testing, we demonstrate that by focusing on
a small group of activities, the time to reschedule can be greatly



reduced compared to full optimal scheduling when there is a valid
time gap for new task to fit in, while maintaining optimal agenda
length (time to complete the agenda). This is because appointments
within an agenda cannot be moved, so the overall length of the
optimal agenda will not change as long as a task can fit in a time gap
before the end of the last meeting. As a result, the optimal sched-
uler performs unneeded computation for many agendas, creating
opportunities to utilize heuristic strategies to target rescheduling to
places where the task can intuitively be inserted. Additionally, we
found that our study participants’ location-based strategy analyti-
cally correlates well with our heuristic algorithm, demonstrating
that our technique of using spatial-proximity of the scheduled ap-
pointments to the new task is similar to what people do in practice.
Due to these similarities, we conclude that our heuristic not only
reduces rescheduling time, but also changes the agenda in a similar
way that people do – in relation to the tasks around it.

2 RELATEDWORK
People spend a large amount of time determining what, when,
and where their appointments are, and what other tasks need to
be completed in particular places or by particular deadlines. It
is challenging for people to manage agendas because there are
often many constraints placed on each appointment or task, and
because those constraints can affect each other in complicating
ways such as determining the time to travel from one location
to the next [2, 18, 19]. These challenges are especially complex
when scheduling around multiple agendas in a family or in a work
environment because each person’s agenda affects the times that
other group members can schedule their appointments.

In order to remember their agendas, people often create artifacts
like calendars, elaborate plans for pickup and dropoff of children at
activities, and routines around scheduled activities [7]. However,
when unexpected or new events or tasks disrupt the agenda, even
with these aids people still can fail to complete all of their required
activities [1, 7]. Failing to complete an agenda can have significant
consequences for people such as missing important deadlines to
complete work items [23]; forgetting items or missing events for
school-aged kids [7]; and pushing tasks to another day, cascading
changes and potentially more missed events.

Because scheduling meetings at work with many people can be
tedious due to conflicting constraints on participants’ time, many
tools have been created to help people with this task. Microsoft
Outlook allows participants to look at each others’ schedules using
a visual calendar to find times in which everyone is available. Other
tools allow people to list their time preferences on their calendar
so that an agent can find the highest ranked time for everyone [5],
or enable them to create agents to negotiate times on their behalf
[3]. Because it is still tedious to list all of one’s preferences, still
more work allows people to demonstrate their scheduling strategy
[11] or provide a schedule workflow to follow [6]. Interestingly,
support for scheduling family agendas has focused on supporting
communication through calendar annotations for reminders rather
than helping to schedule the appointments in the first place [19].

Beyond the challenges of scheduling appointments, unconstrained
tasks such as todo list items pose a different challenge. Because they
do not have set start and end times but may have deadlines, tasks
must be inserted into agendas at opportune times. For example,

students typically have many homework assignments to complete.
These assignments have deadlines but not set hours, so students
must schedule time to work on them during the time gaps between
their constrained appointments like class lectures. Tools like [23]
help students to prioritize what to work on when and schedule that
work time within a calendar. Similarly, when people schedule tours
through cities, e.g., for vacation, they have a list of locations that
they would like to visit and constraints about when those locations
are open and closed. Creating a tour itinerary requires scheduling
temporally-unconstrained tasks on an agenda [17, 20].

Scheduling all of these types of appointments and tasks on an
agenda is an NP-Hard constraint satisfaction problem that involves
modeling the temporal and spatial requirements to ensure that
a solution agenda is feasible [10]. Recent work has focused on
framing unconstrained or flexibly-constrained tasks within the
same constraint satisfaction scheduling framework [21]. Because
people may have potentially many appointments during their day,
a decision support agent to assist in scheduling tasks should be
able to solve scheduling problems more quickly than exponential
time. Approaches to efficient scheduling trade off optimality of the
solution (i.e., minimizing agenda start time to end time, placing all
of the appointments/tasks on the agenda) for speed of finding a
solution. For temporally- or spatially-flexible tasks in particular,
[21] demonstrates an algorithm for optimizing an agenda that runs
in linear time but at the cost of not scheduling all events.

Additionally, a decision support agent should perform the sched-
uling task in a similar way to people so that they can interpret the
schedule changes easily. To the best of our knowledge, no prior
work has studied how people schedule new tasks in their agenda.
In this work, we first present a study in which we asked partici-
pants to schedule a new task in an agenda and we measured their
strategies. We found that people spatially cluster appointments
to focus on finding time gaps around locations near to the new
task (e.g., we stop at the post office when we are already at the
grocery store next door). Then, we propose a technique for sched-
uling temporally-unconstrained tasks that takes advantage of our
study finding by clustering the appointments and only reschedul-
ing nearby clusters. Because the clusters can be kept at a constant
size, the algorithm runs in constant time compared to linear or
exponential time of other algorithms. Additionally, our algorithm
always finds the optimal solution, unlike prior approaches.

3 HUMAN SCHEDULING STRATEGIES
In order understand how people perform agenda scheduling tasks,
we first performed an experiment in which each participant was
asked to add tasks with set locations and durations “at convenient
times” within 10 unique 8-appointment agendas. Recall that ap-
pointments are activities with both location and time constraints,
whereas tasks have only location constraints; this means that par-
ticipants had to add a task without moving any of the existing
appointments on the agenda. We analyzed the reported and demon-
strated strategies that the participants used based on the order that
they checked gaps in the agenda to see if the new task fit.

3.1 Agenda Design
In order to avoid biasing our agendas in any way, we asked a third
party to generate eleven agendas of appointments at locations



Figure 1: Participants were given a specific task location and
duration to add to each of ten agendas. The map was the
same for all agendas.

based on the map in Figure 1 that could represent either one-time
appointments or recurring ones. The third party also created one
extra task (location and duration) for participants to add to each
of those agendas. We required: 1) appointments be at a variety of
times within the agenda, near and far from other nearby locations;
2) appointment times be separated by time gaps of at least as much
time as to travel from one location to the next – the number of
minutes to travel from one location to the next equals the number of
dots along the shortest path; 3) each new task be a unique location
so that we could easily distinguish between the agendas.

One agenda was used as the example explained to participants.
The 10 remaining agendas are shown in Table 1; the tasks to add are
in Table 2. The agendas are diverse in terms of when tasks can be
added and how spatially close those tasks are to other appointments.
Task locations range from close by (4 steps) to very far (15+ steps)
from the nearest appointment location. Half of the agendas allow
for the new meeting to be included in time gaps early in the day
(between the first two or second two meetings), and half require
the meeting to be in time gaps in the second half of the day, and
some have two times. The time gaps when tasks fit into the agendas
are darkened in Table 1. The tasks could also be added to the end
of the day for a longer (suboptimal) agenda.

3.2 Experimental Setup
We used SurveyMonkey1 to deploy our survey and collect our re-
sults. Participants who consented to take our experiment were
shown one example agenda along with our map (Figure 1). They
were told that the number of dots along the path from one appoint-
ment to another was equal to the number of minutes it would take
to travel there. Then, they were given one new task location and
1https://www.surveymonkey.com

duration and were asked to choose the first time that it would fit
in the agenda without disrupting the existing appointments. Only
participants who answered this question correctly could complete
the study for payment of $5. This helped us ensure that participants
were not just clicking randomly and understood the experiment.

After the example agenda, participants were shown a random
ordering of 10 more agendas (Table 1) on the same map and with
the instruction to find the most convenient time to put the new task
(Table 2) without disrupting the rest of the appointments. We used
the word “convenient” in order to allow participants to choose any
time slot where it would fit or even at the end of the day instead of
within the agenda. For each agenda, participants were then asked
two questions. First, they used a drop down menu to select the
time to add the new task including at the end of the day. Second,
they used radio buttons to indicate the order that they checked the
time gaps before deciding on a suitable time. This second question
allowed us to assess the demonstrated strategy that participants
employed when searching the agenda.

After the 10 agendas, participants saw a final page asking them to
indicate which strategy they used (e.g., starting from the beginning
of the day, choosing the closest locations, choosing the longest time
between meetings, or “other” with space for explanation). They
then entered their email address to get paid for the study, and saw
a final thank you page to indicate that the study was done.

3.3 Participants
Participants were recruited from a small liberal-arts university
using mailing lists for students, faculty, and professionals interested
in technology, information systems, data analysis, and business at
the university. Sixteen people successfully completed the study.
While this sample was fairly small, as the results later show, the low
variance in participant responses precluded the need for a larger
scale study. Being at a university, we assumed that all of them had
engaged in scheduling appointments and tasks prior to the study.
We did not collect any further demographic information about the
participants. We excluded one participant who indicated that they
had determined that they did not have to check the agenda if they
chose “after the last meeting”. This participant was paid but was
removed from the study because, while technically correct, they
did not provide the data we were looking for in our analysis.

3.4 Analysis and Measures
For each participant, we collected their responses for when the
new task would fit into the agenda, their reported order that they
checked the time gaps, and their reported strategy from the last
page of the study. Participants reported using three main strategies
- starting at the beginning of the agenda, closest appointment to task,
longest time gap - and all reports of “other” were some combination
of these three. Based on the reporting, we also manually coded
each agenda with the strategy that they demonstrated based on
the first time gap in the order they reported checking (beginning,
closest, or longest). We did mark a demonstration as two or more
strategies if we could not distinguish a single strategy. For example,
participants who chose a time gap that was both the first of the day
and the closest to the task were coded as both beginning and closest.



Agendas and Their Respective Clusters
A Library 35 Police 15 Cafe 10 Dispatch 50 Cons. Site 10 Bank 15 Real Cafe 30 Theater
B Cafe 35 Beach 15 Farm 5 Cons. Site 15 City Park 10 Home 30 Post Office 15 Art
C Theater 15 Real Cafe 30 City Park 15 Mini Mall 10 Art 10 Ralph’s 45 Dispatch 15 Marina
D Ralph’s 30 Library 5 Art 15 Cafe 30 Marina 15 Health C. 15 Amphi. 15 Real Cafe
E Beach 15 Bank 60 Cons. Site 15 Home 5 Gas 10 Lockers 15 Health C. 15 Lockers
F Cons. Site 15 Mini Mall 20 Fire 10 Police 15 Home 10 City Park 45 Marina 15 Ralph’s
G Art 15 Obs. Room 15 Library 15 Cafe 15 Marina 45 Cons. Site 10 Orange Plaza 20 Real Cafe
H Ralph’s 5 Library 35 Police 15 Cafe 10 Dispatch 50 Cons. Site 10 Bank 15 Real Cafe
I Theater 15 Real Cafe 30 City Park 15 Mini Mall 10 Art 10 Ralph’s 45 Dispatch 15 Marina
J Bank 10 Library 20 Police 10 Theater 30 Beach 35 Post Office 10 Amphi. 5 Cons. Site

Table 1: Each agenda included eight appointments with a time gap between each pair. The times when the new task fits into
the agenda are darkened. The color will be discussed with respect to our heuristic algorithm.

Avg. Gaps
Task to Add Duration Checked Accuracy

A City Park 20 4.71 0.73
B Fire Station 10 4.82 1.0
C Home 10 4.19 1.0
D Post Office 10 4.72 0.87
E Farm 45 3.04 1.0
F Dispatch 15 5.62 0.87
G Health Center 10 5.08 0.93
H Gas Station 10 5.13 0.93
I Pretend City Hall 10 5.46 0.93
J Real Cafe 10 5.39 1.0

Table 2: Participants were asked to add a different task lo-
cation with a set duration to each unique agenda. The right
columns show the average number of time gaps checked per
agenda out of 7.

From this data, we also computed the:
• accuracy, or whether the time gap chosen fit the task,
• majority strategy, or the most common strategy each partici-
pant demonstrated across the ten agendas, and

• number of checked time gaps for each agenda.
We will use this data to test whether reported strategies match

demonstrated and majority strategies, whether closest and longest
strategies lead to fewer checked time gaps compared to those who
employ the beginning first strategy, and, later, whether our heuristic
algorithm searches time gaps in a similar order to our participants.

3.5 Results
We report p < 0.05 results using * and p < 0.01 using **.

3.5.1 Differences in Agenda. Weperformed a REMLMixedModel
analysis to predict the number of checked time gaps based on the
agenda, with participant id as a random effect. As expected, we
found that there is a significant effect of agenda on number of
checked time gaps (F (9, 478) = 13.69**). Since many participants
checked the agenda from beginning to end, they checked fewer
gaps when the task fit early in the day. We performed the same
REML analysis with accuracy as the dependent variable and found
no significant effects of any of our independent variables includ-
ing agenda. Participants were accurate at finding valid time gaps
irrespective of the agenda (Table 2).

3.5.2 Time Gaps Checked By Strategy. In order to understand
the relationship between the number of time gap checks and the
strategies that were employed, we performed a Mixed Model anal-
ysis with demonstrated strategy, reported strategy, and majority
strategy as fixed effects, agenda as repeated effect, and participant
id as random effect. We found statistically significant effects for two
of the demonstrated heuristic strategies (closest F (1, 120) = 14.67**,
longest F (1, 132) = 38.97**), but not beginning (F (1, 132) = .94). We
also did not find a significant effect of majority (F (1, 132) = 0.04)
or reported strategy (F (1, 132) = 1.73). The reported and majority
strategy were not significant, because we found that participants
used different strategies depending on the agenda (i.e., their re-
ported strategy did not correlate with demonstrated one).

When we remove the non-significant effects, we find that the
model equation that predicts the number of time gaps2 is

2.63 − 1.72∗(longest)−1.01∗(closest).
In other words, utilizing a longest time strategy decreases the num-
ber of time gaps checked per agenda by 1.72, while utilizing the
closest strategy lowers the number by 1.01 checks. This finding is
confirmed with an ANOVA comparing the three strategies; there is
a statistically significant difference between number of time gaps
checked by participants using different demonstrated strategies
(F (3, 146) = 18.32**). A Tukey test shows that using the beginning
strategy resulted in 3.54 checks vs. 2.63 for the other strategies (*).

3.5.3 Results Summary. To summarize, participants used strate-
gies of finding closer locations to the new task or longer meeting
times with the goal of reducing the number of time gaps to check.
Those who employed these strategies were able to reduce the num-
ber of checks they performed by 25% on average compared to start-
ing at the beginning of the day. Given the boost in performance
for these strategies, we focus on creating a heuristic scheduling
algorithm that can mimic the results.

4 HEURISTIC SCHEDULING ALGORITHM
An optimal solver is guaranteed to find the shortest scheduled
agenda for a set of appointments and tasks. However, as the number
of activities on the agenda increases, so does the time to find a new
agenda. The above human participant study suggests two heuristics
for directing the search for inserting a task in an existing agenda:

2Longest and closest are binary variables for whether the strategy was demonstrated.
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Figure 2: Agendas at different stages of the rescheduling process. (a) The original agenda, with locations numbered in the order
in which they are visited. (b) The original agenda after spatio-temporal clustering, with colors marking the different clusters.
(c) The partial agenda that is rescheduled first, including the new task in red, the closest cluster to the new task, and the two
surrounding appointments. (d) The final agenda after the new task is added.

one based on time gaps in the agenda, like the longest strategy;
and one based on spatial proximity, like the closest strategy. We
focus here on the latter, which we deem to be the more challenging
strategy to replicate; we leave the former to future work.

Accordingly, we propose a heuristic for adding tasks to agendas
that focuses on the spatial proximity of the new task to appoint-
ments and tasks already on the agenda. The approach identifies the
temporal portion of the agenda that is spatially the most similar
to the new task, and then performs targeted rescheduling with
that smaller group of activities and the new task. This approach
draws upon and expands other work that proposes opportunistic
rescheduling algorithms to try to minimize the amount of reschedul-
ing that must be done. Foundational work by [12] and [13], for
example, focused on finding similar jobs in job rescheduling tasks
but doesn’t consider spatial constraints. Similarly, [22] focuses on
constraining vehicle routing tasks spatially for rescheduling but
without time constraints.

Intuitively, our heuristic finds portions of the agenda that are
likely to support the new task; because spatial-closeness implies
that navigation time between the activities is shorter, smaller time
gaps in the agenda are more likely to fit the new task. Additionally,
because the number of activities to reschedule is much smaller
than the entire agenda, the speed of solving the new agenda should
greatly decrease. We next discuss the components of our heuristic
scheduling algorithm, provide an example illustrating how it works,
and then present results to compare it with an optimal scheduler.

4.1 Algorithm Design and Implementation
There are three components to the heuristic scheduling algorithm:
(1) clustering the existing agenda so that tasks and appointments
are binned according to spatio-temporal proximity to the new task;
(2) finding the optimal solution to the subset of activities (including
the new task) within the cluster closest to the new task; and (3)
expanding the search area if no solution is found, repeating the
process until a valid agenda is reached. The heuristic approach is
described in prose below; pseudocode also appears in Algorithm 1.

Data: current_agenda, new_task
Result: new_agenda

1 clusters = warped-k-means(current_aдenda);
2 new_task_cluster = clusters .cluster(new_task);
3 while partial_aдenda == null do
4 partial_aдenda =

solve-optimally(new_task_cluster .tasks()
⋃

new_task);
5 new_task_cluster .add(new_task_cluster .prior-cluster(),

new_task_cluster .next-cluster());
6 end
7 return current_aдenda.update(partial_aдenda);

Algorithm 1: Pseudocode for heuristic scheduler.

4.1.1 Spatio-Temporal Clustering. Our approach requires a clus-
tering in both space and time. Space alone is not sufficient, since
activities spatially near one another may not be scheduled close in
time. Similarly, time alone is not sufficient, since activities sched-
uled near to one another may not be spatially close. To cluster the
activities, we thus use Warped K-Means [16], an unsupervised clus-
tering algorithm that considers not only spatial similarity but also
the sequence of the data points3. This consideration of sequence
provides an implicit consideration of time in the classification. Dis-
tance between data points can be provided by any appropriate
distance function based on the point’s x and y coordinates4. To
algorithmically determine the number of clusters, we incrementally
increase the number of clusters until the average silhouette of the
clusters is no longer increasing. The number of clusters that results
in the maximum silhouette at that point is used as the number of
clusters for the heuristic scheduler.

Thus, the first step of our heuristic scheduling algorithm when it
receives an existing agenda (Figure 2(a)) and a new task is to cluster

3We used the implementation of Warped K-Means provided by the authors at
https://luis.leiva.name/wkm/
4While technically any distance function can be used, because of K-Mean’s emphasis
on the location of cluster centroids, appropriate distance functions will be in the X-Y
space.



the existing agenda using Warped K-Means (Figure 2(b)). It then
classifies the new task into an existing cluster to find the closest
cluster for that task and proceeds with the next step, below.

4.1.2 Schedule Optimization. To generate an agenda optimally,
we use a Mixed Integer Programming paradigm adopted from Kara
and Derya ([14]). It provides a formulation that for minimizing
agenda length given both tasks and appointments. To solve the
problem, we use Google’s OR-TOOLS5 wrapper to the MIP solver
COIN-OR Branch and Cut [8]. We use this solver because it has
been successful with the problem formulation we consider here
[14], and because the OR-TOOLS wrapper is publicly available,
widely-used and effective.

Given the new task’s cluster, our algorithm extracts a partial
agenda consisting of only the activities in that cluster (Figure 2(c)).
It then attempts to optimally schedule that partial agenda with the
new task, constrained by the partial agenda’s surrounding locations,
start and end times. Intuitively, this means the algorithm is checking
to see if the new task can be fit into that partial agenda. If it can,
the resulting partial agenda is used to update the overall agenda,
generating a solution to the problem (Figure 2(d)).

4.1.3 Expanding Incrementally. If it cannot fit the new task into
the first cluster, the heuristic incrementally expands the partial
agenda to include the surrounding clusters, stopping when it finds
a solution. If a solution is not found within a subset of the agenda,
the upper bound on the overall agenda’s end time is dropped in
order to allow the new task to potentially add on to the end of the
current agenda. Thus, the algorithm guarantees that the shortest
possible solution is always found.

5 EVALUATION
In order to assess the heuristic scheduler, we performed two ex-
periments. The first experiment compared the performance of our
heuristic scheduler against an optimal rescheduling algorithm. The
second experiment compared the heuristic’s performance with the
strategies that people used in the human-subject experiment.

5.1 Comparison to Optimal Scheduling
5.1.1 Agenda Design. To compare the different scheduling ap-

proaches, we generated random agendas of 30 activities each. To
successfully satisfy the agenda, the agent is required to “complete”
each activity by going to its location. The first activity was consid-
ered the agent’s starting place; the agent must also return to the
starting location after executing all tasks.

Each activity’s location was randomly selected on a 50x50 grid
with the condition that no two activities were in the same loca-
tion. Each activity had the negligible duration of 1; note that other
durations could be used without changing our results. A specified
percentage of activities designated as appointments and were given
start and end times at which the agent needed to be at that task’s
location. These appointment times were constrained to make sure
that the agenda always had a valid solution, using Manhattan dis-
tance to calculate the travel time between tasks. We considered
appointment times for [20%, 100%] of tasks, with increments of 10%,
with 100 agendas per appointment percentage. This resulted in a
5http://developers.google.com/optimization/

total of 9 sets of 100 agendas each. For each agenda, a new task dura-
tion and location was randomly generated, also with the constraint
that it was not in the same location as any existing activity.

5.1.2 Experimental Setup. For each agenda, we considered two
rescheduling strategies: a full optimal reschedule; and rescheduling
using our heuristic scheduler. We recorded the time it took for each
algorithm to find a solution. We also recorded the final agenda
length ultimately found by each rescheduling strategy.

5.1.3 Measures. We measured three variables:

• agenda length, the total duration of the agenda.
• agenda scheduling time, the time it took to schedule (or
reschedule) the tasks and appointments of the agenda.

• agenda distance, the distance of the rescheduled agendas
when compared to the original agenda. To calculate this, we
use Definition 4.2 of [9], which defines plan and schedule
similarity metrics.

5.1.4 Results. The results show a clear benefit of the heuristic
rescheduling strategy vs. optimally rescheduling. Figure 3(a) shows
the length of the agenda using heuristic rescheduling vs. optimal
rescheduling. Not surprisingly, the length of the plan increases
with the number of appointments, because fewer and fewer tasks
can be “fit in” between appointments. Importantly, as described
earlier, the heuristic rescheduling strategy always finds the optimal
solution. Figure 3(b), however, shows that it typically finds the
optimal solution in much less time. The computation time generally
decreases for all algorithms as the percentage of tasks decreases
and percentage of appointments increases because there are fewer
tasks to schedule. However, the heuristic rescheduling strategy
consistently uses less time to reschedule than both the original
(optimal) agenda construction, as well as optimally rescheduling.

Together, these two results occur because appointments within
an agenda cannot be moved, so the overall length of the optimal
agenda will not change as long as a task can be fit in any time gap
before the end of the last appointment. As a result, the optimal
scheduler often performs unneeded computation for many agendas,
while the heuristic strategy targets its computation to places where
the task can intuitively be inserted. Overall, these two graphs high-
light our early performance claims of the paper: that our heuristic
finds the best solution in less time.

Additionally, we analyzed the agendas produced by the two
rescheduling conditions to see which generated agendas that were
most similar to the original agenda, with the assumption that closer
is better for human understandability of the new agenda. The heuris-
tic rescheduling strategy far outperformed the optimal rescheduling
strategy in this regard, both when considering the maximally dis-
tant agenda for a given percentage of appointments, as well as the
average distance of agendas for a given percentage of appointments.
Intuitively, this is because the heuristic strategy moved around
fewer tasks than the optimal strategy, which sometimes completely
regrouped tasks in between appointments. This indicates that the
agendas generated by our approach should be more understandable
by human partners than those generated by the optimal strategy.
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Figure 3: (a) Length of the original agenda after our heuristic rescheduling, and after optimally rescheduling. Note that the
heuristic rescheduling agenda length always equals the optimal rescheduling agenda length. (b) Scheduling time to generate
the original agenda; to add the new task using our heuristic rescheduling; and add the new task using optimal rescheduling.
(c) Agenda similarity between the original agenda and the new heuristic agenda or the new optimal agenda. The graph shows
both the maximum distance of the agendas with those percent appointments, as well as the average.

5.2 Validation of Heuristic Strategy
In order to further validate that people use similar strategies to
our heuristic and execute that strategy in a similar order to our
heuristic, we compared our heuristic scheduler to the strategies
of our human-subject participants on the original experimental
agendas.

5.2.1 Heuristic Algorithm Implementation. The main compo-
nents of the heuristic scheduling algorithm, including spatio-temporal
clustering and cluster-based heuristic schedule optimization, per-
formed the same in the human-subject domain as they did for the
larger grid agendas tested above. The single substantive difference
for this task was the distance measure between locations – Manhat-
tan distance is not appropriate because of the non-grid-like roads
in the map. We used a Sammon function6 to transform the appoint-
ments’ X-Y coordinates on the map to a new coordinate space in
which the Manhattan distance approximates travel distance.

Our heuristic algorithm, as before, spatially clustered the ap-
pointments when scheduling the new task. Each transition to a
new color in Table 1 shows a transition to a new cluster. For ex-
ample, agenda A had four clusters, each with two appointments
while agenda H had 5 clusters. An average of 2.5 appointments
were determined to be in each cluster. When adding the new task,
the heuristic scheduler checked the closest cluster to the task first
(pink), then expanded in both earlier and later directions to include
more clusters. The first expanded cluster was blue, then green,
and then yellow until it found to find a valid agenda. The darker
square(s) in each row is the time gap where the new task fits (end
of the day time gap not shown).

5.2.2 Results. Our heuristic algorithm found a correct time gap
in the first cluster in 8 out of 10 agendas. Agendas A and F required

6Specifically, the Sammon library in R.

three clusters to be checked as can be seen in the darkened spaces
colored green on Table 1. We report p < 0.05 results using * and
p < 0.01 using **.

We compared the order that participants checked the differ-
ent time gaps to our heuristic algorithm. We performed a lin-
ear regression to predict the participant’s time gap search order
based on the heuristic cluster order, as well as the strategy that
was used (beginning, closest, and longest) and the interactions
of the heuristic cluster order with the strategy. The R2 = .27,
and the model was found to predict the participant order statis-
tically significantly (F (7, 494) = 25.76**). In particular, all vari-
ables tested were statistically significant - intercept (t(1) = 3.47**),
heuristic cluster (t(1) = 1.95), beginning (t(1) = −2.35**), closest
(t(1) = −6.0**), longest strategies (t(1) = 10.4**), and interactions
cluster-beginning (t(1) = 3.78**), cluster-closest (t(1) = 5.45**),
cluster-longest (t(1) = −9.82**). This indicates that the cluster
heuristic does predict the participant order, but the predictions
change depending on which strategy was used.

A graph of the heuristic cluster vs. participant order correlations
for those who use the closest strategy is shown in Figure 4. Each
line is the regression for one agenda. Note that participants did not
employ the strategy at all on two agendas. All but one agenda have
positive correlations between the cluster and participant orders.
The negative correlation is only supported by 3 data points from
a single participant. These results indicate that the order that the
heuristic chooses to evaluate time gaps does correspond to the
participants’ closest location strategy.

6 DISCUSSION AND CONCLUSIONS
In this paper, we have introduced an algorithm for human-centered
decision support for agenda scheduling. We began by running
a human participant experiment that investigated the ways that



Figure 4: There is a positive correlation between the heuris-
tic cluster order and the participants’ order for evaluating
time gaps in agendas for all but one agenda.

humans develop and modify agendas on their own. We then took
inspiration from human strategies to create an automated, optimal,
heuristic rescheduler for updating agendas to add new tasks that is
both similar to how people doing scheduling, as well as fast and
efficient. This results in a system that can support people in a timely
manner without sacrificing optimality.

One of the key reasons why the heuristic scheduler is so success-
ful is because it takes advantage of a characteristic of agendas that
people, whether consciously or unconsciously, take advantage of
while rescheduling. In agendas with appointments, there is bound
to be free time in the agenda where extra tasks can be added; the
need for full replans is very rare. This flexibility can be taken ad-
vantage of by either looking at activities that are spatially close to
the new task, as we do here, or at large temporal gaps in the agenda,
as we will do in future work.

There are two other main aspects of work that we will focus on
in the future. The first is studying how explainable and understand-
able people find the agendas generated by the heuristic scheduler.
While we have every reason to believe that our approach performs
well with this criteria, there is always the chance that human par-
ticipants did not accurately represent their reasoning strategy or
process, implying that our heuristic does not match as well with
human performance as our results currently indicate. The second
is expanding our validation to other types of agenda modification,
such as deleting a task or selecting the location and time that a task
can be performed. For example, if the task is going to the ATM,
there are many possible ATMs that one could go to depending on
locations and times of appointments on the agenda (i.e., [21]). As
before, our current heuristic can extend to these cases naturally;
however, we still plan to perform additional evaluations to make
sure that the understandability extends to these cases as well.
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