
Predicting Data Scientist Stuckness During the
Development of Machine Learning Classifiers

Moshe Mash
Carnegie Mellon University

mmash@andrew.cmu.edu

Shoshana Oryol
Carnegie Mellon University

soryol@andrew.cmu.edu

Reid Simmons
Carnegie Mellon University
rsimmons@andrew.cmu.edu

Stephanie Rosenthal
Carnegie Mellon University
srosenth@andrew.cmu.edu

Abstract—The success of data scientists in developing machine
learning models is contingent on an iterative development process
for detecting patterns in data, finding and extracting useful
features, and maximizing their model’s performance. However,
it is often the case that they struggle during model development
and become stuck and unable to make significant progress. We
collected qualitative and quantitative data from the workflow of
data scientists that allow us to learn from and examine such
moments of stuckness. We used this data to develop a model
for predicting stuckness based on real-time indicators, such as
code artifacts, and then used the model to develop an innovative
algorithm that determines precisely when a potential stuckness
intervention should occur: as close as possible to the beginning
of actual stuckness. Our algorithm’s performance indicates the
potential efficacy of predicting data scientist stuckness algorith-
mically under real-world circumstances and for real-world needs.

I. INTRODUCTION

Data science and machine learning are disciplines concerned
with the extraction of knowledge and insights from increas-
ingly large and more complex datasets [1]. As the field of
data science has expanded, companies are hiring data scientists
to engage in large-scale data analyses of massive troves of
corporate data.

The emergence of data science as a field has led many
researchers to study the challenges that data scientists face
as they explore data and create machine learning models [2].
As a whole, these studies have found that – because every
dataset and every data science task is different – the data
science workflow is not monolithic, uniform, or sequential [3].
Instead, it is contingent on the content and nature of the dataset
and task and involves an iterative and exploratory process of
trial and error that many data scientists (even experts) find
challenging [3]–[6]. One particularly difficult aspect of this
process is that the iterative nature of development leads data
scientists to repeat the same actions over and over again in
an attempt to determine the right combination of data features
and machine learning models to maximize their performance
metrics [7], [8]. At each step of their model development
process, they struggle to decide whether to keep working on
a particular task, such as feature selection, or to switch to a
new task, such as data visualization or feature engineering, in
an attempt to find a better model [9], [10].

At such points, data scientists can get stuck in a state
where they either do not know how to proceed in order
to continue making progress at improving their models or
they continue performing the same actions repeatedly without
any progress, potentially wasting valuable time that could
be more gainfully employed elsewhere. As such, a tool that
could detect stuckness and potentially provide feedback or
alternative actions to perform could enable data scientists to
be more efficient at developing machine learning models.

The present work has three main goals: (a) to study the
nature of data scientists’ behavior when they get stuck; (b) to
analyze data scientists’ code and output artifacts in order to
extract relevant features for predicting stuckness; and (c) to de-
velop an algorithm for determining optimal times for stuckness
resolution interventions (e.g., offering alternate strategies) that
would be feasible for implementation in existing real-world
data science workflows.

While prior work that studied the data scientist workflow
relied on qualitative methodologies in the form of interviews
and observations of the data science workflow [4]–[7], [9],
[11], [12], our in-situ data collection methodology allows us
to analyze data scientist artifacts produced as data scientists
are working, including code and code output, video recordings
of the participants’ screens and bodily and facial gestures,
and audio recordings of their vocalized thought processes.
This allows us to label data scientists’ stuckness while they
develop machine learning classifiers based on the qualitative
data gathered and to develop a predictive model based on
quantitative data extracted from the participants’ code and
output artifacts.

Finally, we developed an algorithm that smooths this predic-
tive model in order to decide whether to potentially intervene
and provide feedback to the data scientist that they are stuck.
We optimized this confidence model such that the intervention
would be as close as possible to the moment the data scien-
tist got stuck, while minimizing false positives. Our results
show that our algorithm predicts stuckness shortly after the
data scientist actually gets stuck – 95% of the true positive
predictions were within 10 minutes of stuckness onset, while
the mean stuckness duration was 25.7 minutes.

Our findings, therefore, indicate the feasibility of predicting
when data scientists get stuck. More broadly, we believe that

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

this logging framework and our models open the door to new
areas of research that would assess data scientist progress
as they work and provide effective support to limit their
frustrations and improve efficiency.

II. PRELIMINARY DATA COLLECTION

With a view to predicting data scientist stuckness, we
initially used the DSWorkflow framework [13] to collect data
from 7 students studying for an M.Sc. with a data science
specialization in fields such as statistics and computer science
and who also possessed a range of practical experience (from
6 months to several years). The participants were asked to
develop 3 predictive models for 3 different datasets and target
variables. This required them to explore and visualize data,
engineer and select features, examine different ML algorithms
and their hyperparameters, and train and test different models
within a Jupyter Notebook. The participants were also asked to
verbalize their thought processes as they developed their mod-
els and we recorded their screen and audio. Furthermore, we
saved the participants’ Jupyter Notebooks every two seconds
to capture their code and code output over time.

We chose three publicly available datasets for our tasks from
the Kaggle [14] and UCI [15] machine learning repositories:
Census Income (CI) [16], Customer Retention (CR) [17],
and Australian Rain (AR) [18]. The participants were given
90 minutes to complete each task, the order of which was
randomized. In total, we collected 20 sessions (7 participants
x 3 data sets, minus one that was not recorded properly). The
study was approved by our IRB.

In order to label stuckness, two researchers, one with social
science and humanities expertise and one with data science
expertise, jointly reviewed the recording of one task from one
participant to get a general idea of phenomena that would
indicate stuckness behavior in the course of completing the
task. Each researcher then labelled each of the 19 remaining
recordings separately. Their labels were then compared for
similarity. The labelers achieved a high inter-rater reliability,
measured using Cohen’s Kappa [19] as κ = 0.93. All disagree-
ments between the labelers were resolved on a case-by-case
basis.

The researchers’ consolidated data eventually led to the
crystallization and formulation of a list of indicative symptoms
of stuckness. Specifically, the screen and audio-based analyses
produced the following main symptoms as indicating a state
of stuckness: (a) Scanning the Data and/or Jupyter Notebook;
(b) Reduction in the Pace of Work; (c) Re-execution of
Models and Cells; (d) Producing Output without Analyzing it;
(e) Participants’ Explicit Statements. In total, 6 experimental
sessions out of 19 were found to present symptomatic evidence
indicating that the data scientist was stuck, representing 4 out
of 7 participants (2 participants got stuck twice). The lengths
of the aforementioned stuckness periods (in minutes) were as
follows: 32, 31, 29, 27, 25, and 24.

III. FEATURE EXTRACTION FROM CODE TRACES

While the symptoms were found to be very relevant and
clear-cut in the audio and screen recordings, an automated
algorithm cannot easily identify and track them. In addition,
we would not expect a data scientist to vocalize their thought
process and share their screen while they are working. Thus,
we determined to create a machine learning model that can
predict stuckness from code-related features alone. Towards
that end, this section presents our approach to extracting
features from the code and its output.

Because code written in Jupyter Notebooks is not necessar-
ily run sequentially (the data scientist can add, run, delete, or
modify code in any order), we used the DSWorkFlow frame-
work to save snapshots of the participants’ Notebooks every
2 seconds, to reconstruct their code and output artifacts in
chronological order [13], and to automatically extract relevant
information from the notebooks to predict stuckness. Finally,
we synchronized the timing of these actions with the labelled
stuckness in our video recordings.

Using both the reconstructed code and output artifacts
from the Jupyter Notebooks, we developed techniques for
extracting a large number of features that we hypothesized
could be useful in predicting stuckness from the data scientists’
code. Each of the features was refined through the iterative
data science process of model training, evaluation, and error
analysis. The following feature types represent the features
that we determined to be important in the classification of
stuckness:

Action Counts. Important types of features are those that
capture data scientists’ tendencies to repeat actions over and
over. For example, we observed that participants often re-
peatedly performed feature selection by changing the line(s)
of code indicating the relevant features and then retraining
and evaluating their models for many different combinations
of features. Action count features were thus computed as
the number of times the data scientist executed each of
the aforementioned actions within a given window size. We
counted actions whose underlying code was both edited and
executed and did not return an error in order to avoid cases
where participants executed their entire Notebook but only
made a change to one cell and also in order to avoid counting
actions repeatedly when the data scientist was debugging.

Training/Evaluation Iteration. The natural workflow of data
scientists involves an iterative cycle where they write code
for analyzing and manipulating data, train and evaluate ML
models, and inspect how their changes affect the output in
an effort to maximize the predictive model’s performance [3].
With this in mind, we defined the training/evaluation iteration
(TEI) as one iteration of this cycle (i.e. carrying out one or
more manipulations of the data and training and evaluating
various ML algorithms and/or tuning hyperparameters), and
created a feature for each action that computes the number
of times the action was performed divided by the number of
TEIs within a window of time.

Performance Measures. Another aspect of stuckness is when

data scientists are not making progress in improving their
model’s performance. We extracted model prediction perfor-
mance data, such as accuracy, F1, AUC, etc., by parsing the
output of evaluation actions. We used this data to develop such
features as last performance score and best performance score
attained thus far, as well as indicators for whether performance
improved recently.

Since data scientists can use different metrics based on
the task’s properties and their preferences, we defined a
performance indicator, PI , that has a value of 1 if any of
the extracted metric scores are higher by at least 0.01 points
than the highest previous score. We then developed a feature,
#PI , that counts the number of PIs during a window of time
(i.e., how many times the performance improved in the last x
minutes). The reasoning behind this feature is that the number
of improvements in performance is expected to be low when
a data scientist is struggling.

Inactivity. When data scientists struggle to determine what
action to perform next, they tend to take frequent breaks from
coding to re-examine their previous models and the data. We
defined inactivity as not writing any code for more than a
given number of seconds and accordingly defined the feature
#inactivity as the frequency of this occurrence in a given
time window. We also created a feature for the duration of
longest period of inactivity within a given window of time.

IV. PREDICTIVE MODEL

To predict stuckness using the features described in Section
III, we implemented several machine learning models using
the SciKit-Learn library including Decision Trees, Logistic
Regression, Neural Networks, K-Nearest Neighbors, Support
Vector Machine, Random Forests, and Gradient Boosting
Decision Trees. Given 19 complete sessions1, we used a leave-
one-out methodology to train a single model using all but one
session and evaluated the model on the remaining workflow
session. We also conducted hyperparameter tuning on each
model’s important parameters.

We repeated this process with different sets of features and
different sliding window sizes for the features that required it.
In this context, window size refers to the amount of time in
which we compute the features (e.g., counting the actions in
a particular timeframe). In practice, this window corresponds
to the amount of time that a support system would need to
observe data scientists’ coding actions and outputs before
making a prediction. We tested window sizes of between
5 and 60 minutes with different window sizes for different
features. We also examined models with a subset of these
features, examined different combinations of metrics for the
#PI feature, and used 30 and 60 seconds as the thresholds
for the #inactivity feature.

We evaluated precision, recall, and the F1 score for each of
our trained models using the features and window sizes that
attained the highest F1 score. We do not use accuracy as a

1In addition to the one set of recordings not saved, we were also missing
the code logs from a second session.

metric because our data is imbalanced – always predicting “not
stuck” yields 89% accuracy. Moreover, our domain requires
relatively high recall and precision in order to offer real-
world usefulness. More specifically, a tool with low recall will
not predict enough stuckness, and a tool with low precision
will be more cumbersome than helpful as it will incorrectly
predict stuckness too frequently. Based on an analysis of all the
models, the following six features consistently produced the
best performance: (a) Number of times that Feature Selection
was performed in the last x minutes (#FS); (b) Number of
times that Feature Engineering was performed in the last x
minutes (#FE); (c) Number of times that Feature Selection
was performed in the last x minutes divided by the training-
evaluation iterations in the last x minutes (#FS/#TEI); (d)
Number of times that Feature Engineering was performed in
the last x minutes divided by the training-evaluation iterations
in the last x minutes (#FE/#TEI); (e) Number of times that
accuracy or recall performance improved in the last y minutes
(#PI); (f) Number of times that the data scientist was inactive
for at least 30 seconds in the last y minutes (#inactivity).

We varied the window sizes, x and y, to understand the
impact they exert on performance. Specifically, x represents
the window size which relates to actions (i.e. data manipu-
lations and model training and evaluations) and y represents
the window size which relates to making progress. The best
performance was attained by a Decision Tree (DT) model
with a maximum depth of 6 (F1 = 0.88, recall = 0.81,
precision = 0.96) with x = 15 and y = 5. The second
highest score was attained by a Support Vector Machine with
a 2nd-degree polynomial kernel (F1 = 0.83, recall = 0.8,
precision = 0.87). The other models all had much lower
performance.

V. STUCKNESS DATA COLLECTION

The results of our predictive model indicate that it should
work well in real-word applications. However, we wanted to
verify this by comparing against participant-validated labels.
To this end, we collected additional data from 12 M.Sc. or
Ph.D. students who completed (randomly) one of the Telecom
or Customer Retention tasks (as those have more types of
variables). We repeated the same methodology described in
Section II but used a video camera to record participants’
faces and bodies and had the labelers (who were about 5
feet away from the participants) label stuckness moments
in real time by watching the video and listening to the
participants’ think-aloud verbalization. We also conducted a
post-hoc questionnaire to understand the participants’ own
feelings of stuckness after the task which covered the moments
in which they believed they were stuck and their timestamps.
This study was also approved by our IRB.

After the interview, we compared the stuckness timestamps
mentioned by the participants and those of the labelers and
resolved any outstanding disagreements. In this respect, it
should be noted that the participants and the labelers largely
agreed on the stuckness windows; the disagreements were
largely about the exact second that stuckness began and ended.

In addition, we also discovered two video-based symptoms
that correspond with our notion of stuckness during this
experiment: (a) Rigidity of Facial Expressions and a Lack of
Motion; (b) Touching the Face and Hand Motions.

In total, data scientists indicated stuckness in 7 of the 12
experimental sessions. The mean length of those stuckness
periods was 25.71 minutes, with a standard deviation of 7.15,
a minimum of 18 minutes, and a maximum of 42 minutes.
Analysis using Cohen’s Kappa [19] showed that the labelers
attained a high degree of inter-rater reliability (κ1 = 0.92).
Furthermore, the equivalent Kappa score between the partici-
pants and each of the labelers was κ2 = 0.93.

Finally, we evaluated the DT model with the new batch of
data and the aforementioned 6 features by employing 3-fold
cross validation such that each fold contains 3 test sessions
while the remaining 9 sessions are used for the model training
process. We obtained an F1-score of 0.83, a recall of 0.82, and
a precision of 0.81, which allows us to be fairly confident
that our model would perform satisfactorily in real-world
applications.

VI. STUCKNESS CONFIDENCE ALGORITHM

Our end goal is to predict a data scientist’s stuckness as
close as possible to the actual beginning of the stuckness
period. To this end, we used the collected data and the ground
truth labels that were described in Section V and the DT
model that was described in Section IV. Specifically, that
model predicts whether the data scientist is stuck at any
moment during the completion of the task. However, we wish
to not only capture stuckness moments alone but to also
capture them as early as possible. Furthermore, we would not
want to intervene when the data scientist’s behavior indicates
stuckness for only a short period of time (e.g. thinking “gaps”
between one set of actions and another). We thus developed
an algorithm that indicates the level of confidence in stuckness
and whether the data scientist’s behavior indicates stuckness
for long enough to justify an intervention.

To this end, we define t as the current time during the
task, Xt as the feature vector at time t, and T as a Temporal
Scope that represents the time window (in minutes) that we
examine in determining the confidence level. In particular,
Xt−T ...Xt represents all the feature vectors between t − T
and T . We also define P (ck|Xt) as the probability generated
by our predictive model (see Section V) for the current action
and P (ck) as the static prior. We then use those definitions for
the calculation of P (ck|Xi...Xt), which is the probability that
the data scientist is experiencing a stuckness period at time
t given the performed actions between the i-minute and the
t-minute, where k ∈ {Stuck,Not Stuck}:

P (ck|Xi...Xt) =

{
p(ck|Xt)·P (ck)·P (ck|Xi...Xt−1)∑
k p(ck|Xt)·P (ck)·P (ck|Xi...Xt−1)

, if i ≤ t

p(ck), otherwise
(1)

Our algorithm then estimates the stuckness probability using
Equation 1 for each action and alerts the user about stuckness

Fig. 1. Utility Function. The graph describes the obtained utility, U , as a
function of the time difference, ∆t, between the predicted start of stuckness
and the Ground Truth’s stuckness period start time.

periods when the result is greater than a predefined threshold
value, λ (0 ≤ λ ≤ 1), given a predefined T

pred(Xt|T, λ) =

{
Stuck, if P (Stuck|Xt−T ...Xt) > λ

Not Stuck, otherwise
(2)

There is an obvious trade off between how close to the
beginning of the actual stuckness period an algorithm predicts
that the data scientist is stuck and the rate of false positives –
typically, the longer the algorithm waits to make a prediction,
the more accurate it will be. To optimize that trade off, we
developed a function (Figure 1) to compute the utility of
making a prediction, with utility falling off further from the
start of the stuckness period and negative utility if stuckness
is predicted significantly before the data scientist is actually
stuck.

Specifically, in Figure 1 ∆t represents the difference be-
tween the predicted start of stuckness and the Ground Truth
(GT) start time. When ∆t > 0, a lower ∆t represents an
earlier prediction (closer to the GT stuckness start time) and
will therefore will be assigned a higher utility. On the other
hand, ∆t < 0 represents cases where the predictions occurred
before stuckness actually began. If the prediction is relatively
close to the actual stuckness start, the utility is positive, but
low; if the prediction is far from the actual start, the utility is
negative.

The parameters of the utility function (the constants in
Figure 1) were determined based on statistical measures of
stuckness duration in our data (e.g. 18 minutes is the minimal
duration of a stuckness period in our data). In addition, any
prediction that is not associated with an actual stuckness period
is assigned a utility of −1, and if the algorithm does not predict
stuckness during the data scientist’s entire task session, it is
assigned a utility of zero (neither helps nor hinders).

To evaluate this algorithm, we used the data from the second
study (Section V) and iterated over 0 ≤ T ≤ 30 (at 5
minute intervals) and 0 ≤ λ ≤ 1 to find the optimal hyperpa-
rameters that maximize our utility function. Specifically, for
each setting, we used 3-fold cross validation (220 tests,

(
12
3

)
),

with each fold containing 3 experimental sessions while the
remaining 9 sessions are used for the model training process
(the cumulative number of experimental test sessions is thus
220 · 3 = 660). At each fold we train a DT classifier with a

Fig. 2. Confusion Matrices for Different Temporal Scopes. Values are the
percent of cases among all test set sessions.

maximum depth of six and use Equation 2 for each action in
order to predict stuckness moments.

Finally, we summed the utilities from all the tests and
normalized the values. Specifically, the lowest possible cu-
mulative utility is −660 (a case where a utility of −1 is
obtained for all the test sessions), and the highest possible
utility is 385, as 7/12 of the sessions in our data included
stuckness periods and the number of tested sessions is 660
(660·7/12 = 385)). We thus normalize the total utility, Utotal,
as Unorm = (Utotal + 660)/(385 + 660). In the rest of this
paper, we use U to indicate Unorm.

VII. STUCKNESS CONFIDENCE ALGORITHM RESULTS

We analyzed the impact that the Temporal Scope, T , exerts
on the obtained utility. Specifically, we analyzed the highest
obtained utility, U , (across all λs from 0 to 1 with a step size
of 0.1) as a function of T , and we found that there is a global
maximum at T = 10, with a utility of 0.83 when λ = 0.9.

To better understand this observation, we examine the
predictions associated with T = 5, 10, and 15 by analyzing
their confusion matrices (see Figure 2). The true positive (TP)
predictions (the upper-left entries in each matrix) represent
the cases where ∆t ≥ 0 and ∆t is less than the stuckness
period’s length. False positive (FP) predictions (upper-right
entries) are where the algorithm predicts stuckness when none
exists, which occurs when one of the following cases apply: (a)
∆t < 0; (b) ∆t is greater than the stuckness period’s length;
or (c) the algorithm predicts stuckness during a session that
does not include any stuckness moments whatsoever. False
negative (FN) predictions (lower-right entries) relate to cases
where the data scientist got stuck during the session but our
algorithm did not predict any stuckness. Finally, true negative
(TN) predictions (lower-right entries) are where the algorithm
does not predict stuckness at all in cases where the data
scientist did not get stuck throughout the entire session.

As can be seen in Figure 2, the success rates (i.e. TP + TN)
of our algorithm when using T = 5, 10, and 15 are 75.81%,
84.39%, and 84.09% respectively. An interesting observation
that can be gathered from this Figure is that T = 5’s FP rate

TABLE I
TP PREDICTION ANALYSIS

% TP Predictions (% of total)
Case /
Temporal Scope (T) 5 10 15

∆t = 0 68.86(26.81) 29.27(12.73) 22.39(6.67)
0 < ∆t < 5 27.24(10.61) 36.58(15.9) 22.39(9.7)
5 ≤ ∆t < 10 0(0) 29.27(12.73) 33.21(14.39)
10 ≤ ∆t < 15 0(0) 0(0) 19.57(8.48)
∆t ≥ 15 3.9(1.52) 4.88(2.12) 9.44(4.09)

is relatively high (11.52%) compared to the equivalent rate for
T = 10 (3.04%) and T = 15 (2.12%). This high FP rate can
be explained by the fact that 5 minutes is a too short a time
to determine true stuckness, so even quasi-stuckness behavior
is interpreted as stuckness.

Table I thus details the TP predictions (upper-left cells in
Figure 2). Each entry represents the percentage of cases among
the TP predictions that are associated with a given Temporal
Scope and the values in parentheses are the percentage of
sessions that are associated with that Temporal Scope. In-
terestingly, we can see that 68.86% of the TP predictions
when using T = 5 were predicted at the minute when the
stuckness began, which is much higher than the equivalent
values for T = 10 (29.27%) and T = 15 (22.39%). These
68.86% represent (26.81%) of all 660 test sessions and those
predictions were assigned the highest possible utility (U = 1).

This observation, in turn, can be explained by the rapidity
in which our algorithm reports stuckness periods as it detects a
behavior that indicates stuckness when using a short Temporal
Scope (T). This property, in turn, helps our model catch the
stuckness very quickly but, on the other hand, causes a high
rate of FP predictions as we saw in Figure 2 and as explained
above. Put differently, a designer of an intervention tool, or
users themselves, could adjust T to a value that represents the
tradeoff between predicting stuckness as early as possible and
a high rate of FPs.

VIII. CONCLUSION

Data scientists often struggle to improve their predictive
models and get stuck without making any significant progress.
We captured this by collecting qualitative and quantitative
data and specifically recordings of visual (screens and video)
and audio (think aloud) thought processes alongside code and
output artifacts.

We analyzed the recordings to label stuckness and then
developed a model that would predict stuckness using only fea-
tures that could be extracted from code and output sequences
(feasible for real-time capture). Moreover, we developed an
algorithm that makes use of this predictive model to determine
optimal moments for intervention, such that the intervention
will occur as early as possible after the start of the stuckness
period but will also produce a low rate of false positive
predictions as we would like to refrain from disturbing users
during productive work. Accordingly, our future work will
involve creating intervention tools and testing them with data
scientists as they work.

ACKNOWLEDGMENTS

This research was funded by JPMorgan Chase & Co. Any
views or opinions expressed herein are solely those of the
authors listed, and may differ from the views and opinions
expressed by JPMorgan Chase & Co. or its affiliates. This
material is not a product of the Research Department of J.P.
Morgan Securities LLC. This material should not be construed
as an individual recommendation for any particular client and
is not intended as a recommendation of particular securities,
financial instruments or strategies for a particular client. This
material does not constitute a solicitation or offer in any
jurisdiction.

REFERENCES

[1] V. Dhar, “Data science and prediction,” Communications of the ACM,
vol. 56, no. 12, pp. 64–73, 2013.

[2] T. H. Davenport and D. Patil, “Data scientist,” Harvard business review,
vol. 90, no. 5, pp. 70–76, 2012.

[3] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating
statistical machine learning as a tool for software development,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2008, pp. 667–676.

[4] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations
of developers of intelligent systems: A field study,” in 2016 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 2016, pp. 162–170.

[5] M. B. Kery, “Tools to support exploratory programming with data,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 2017, pp. 321–322.

[6] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 291–300.

[7] K. Patel, J. Fogarty, J. A. Landay, and B. L. Harrison, “Examining
difficulties software developers encounter in the adoption of statistical
machine learning.” in AAAI, 2008, pp. 1563–1566.

[8] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik,
“What’s wrong with computational notebooks? pain points, needs, and
design opportunities,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–12.

[9] K. Wongsuphasawat, Y. Liu, and J. Heer, “Goals, process, and chal-
lenges of exploratory data analysis: An interview study,” arXiv preprint
arXiv:1911.00568, 2019.

[10] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker,
“Gamut: A design probe to understand how data scientists understand
machine learning models,” in Proceedings of the 2019 CHI conference
on human factors in computing systems, 2019, pp. 1–13.

[11] M. Muller, I. Lange, D. Wang, D. Piorkowski, J. Tsay, Q. V. Liao,
C. Dugan, and T. Erickson, “How data science workers work with data:
Discovery, capture, curation, design, creation,” in Proceedings of the
2019 CHI conference on human factors in computing systems, 2019,
pp. 1–15.

[12] D. J.-L. Lee, S. Macke, D. Xin, A. Lee, S. Huang, and A. Parameswaran,
“A human-in-the-loop perspective on automl: Milestones and the road
ahead,” Data Engineering, vol. 58, 2019.

[13] M. Mash, S. Rosenthal, and R. Simmons, “Dsworkflow: A framework
for capturing data scientists’ workflows,” in Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, 2021,
pp. 1–7.

[14] “Kaggle,” 2021. [Online]. Available: https://www.kaggle.com
[15] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml
[16] ——, “UCI machine learning repository,” 2017. [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/adult
[17] P. Gupta, “Telecom customer churn task,” 2017. [Online]. Available:

https://www.kaggle.com/puja19/telcom-customer-churn
[18] J. Young, “Australian rain task,” 2019. [Online]. Available:

https://www.kaggle.com/jsphyg/weather-dataset-rattle-package
[19] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia

medica: Biochemia medica, vol. 22, no. 3, pp. 276–282, 2012.

